Epizoic barnacles (Cirripedia:Crustacea) in a coastal lagoon, Southern Gulf of Mexico

SCIENTIFIC NOTE

1Licenciatura en Biología. DACBiol, UJAT.
2Diagnóstico y Manejo de Humedales Tropicales. División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco. 0.5 km carretera Villahermosa-Cárdenas. Villahermosa, 86039. Tabasco.
993.358.1500 x 6472.
3Posdoctorante CONACyT.

*Email responsible: alberthoj.sanchez@gmail.com

ABSTRACT

Three species of barnacles had reported in estuarine ecosystems of the Grijalva-Usumacinta basin in the Gulf of Mexico, which mainly attributed to limited sampling effort. The species were capture in Mecoacán Lagoon during dry, transition and rainfall seasons. Amphibalanus venustus distribution expanded to an estuarine ecosystem, while A. improvisus and A. eburneus were previously record in Mecoacán Lagoon. The three species were epibionts of gastropods, bivalves, and barnacles. Megabalanus tintinnabulum was not register in this study.

Key words: Distribution, estuarine, Balanomorpha

INTRODUCTION

Barnacles are sessile crustaceans that have a high morphological diversity with a cosmopolitan distribution in estuarine and marine environments. They are associated with almost all hard substrates available, natural or artificial; but some species are parasites or symbionts (Celis 2004, Gittings 2009, van Syoc and Newman 2010).

In the Southern Gulf of Mexico have been registered 10 of the 12 species of barnacles reported for the North of the same marginal sea (Celis 2009). But in coastal ecosystems the basin of Grijalva-Usumacinta rivers, records barnacles are limited to...
three species in Pantanos de Centla and the Carmen-Machona and Mecoacán coastal lagoons (Florido et al. 2000, Celis and Álvarez 2008, Tepetlan and Aldana-Aranda 2008, Montalvo et al. 2010). The low number of records, attributed mainly to the few studies on barnacles in the Southern Gulf of Mexico, supports the updating of the species of epizoic barnacles in Mecoacán Lagoon.

MATERIALS Y METHODS

The Mecoacán Lagoon (93° 04' and 93° 14'W, 18° 16' and 18° 26'N) is shallow and it is communicated with the Southern Gulf of Mexico through an inlet located in its North section. The Escarbado-González, Seco and Cuxcuchapa rivers drain into the East, Northwest and Southeast of the lagoon (Domínguez et al. 2003). The salinity variation shows a spatial gradient from the Southeast to the North, with an intra-annual fluctuation between 0.5 and 29 psu (Domínguez et al. 2003), is associated with the temporal fluctuation of the flow of these rivers. Based on the above, La Bocana (93° 7.97'W and 18° 26.40'N), Boca Negra (93° 6.83'W and 18° 24.75'N) and Boca Arrastradero (93° 4.16'W and 18° 24.22'N) were selected as sampling sites. In 2012, the barnacles sampling design included three locations and three tows per site in three seasons, which sum 27 tows with a shrimp commercial net of 2.54 cm mesh. Sampling was done in the dry (March), transition (July) and rainy (September) seasons.

The specimens were preserve in 80% alcohol and they were identify through the taxonomic keys proposed by Gittings et al. (1986); Celis et al. (2007) and Farrapeira (2008). Each species included its curatorial data. The distribution was emphasize in the Western Atlantic and it was detail for Southern Gulf of Mexico. In the examined material was indicated the number of organisms, average in millimeters (mm) of the length (LC), width (AC) and height (HC) of the carinal plates, barnacle´s hosts species was settled, and salinity range. Organisms preserved in biological collection of Laboratorio de Humedales of División Académica de Ciencias Biológicas, UJAT.

RESULTS

In total, 87 living organisms were review from three Amphibalanus species. Among these, the presence of A. venustus means the expanding of its geographical distribution in an estuarine ecosystem in the Southern Gulf of Mexico. Most specimens (81) were capture in communication channel with the sea (La Bocana), and six organisms in the zone of intermediate influence of tidal currents and river discharge (Boca Negra). None barnacle was capture in the area of direct influence of river flow.

Amphibalanus eburneus (Gould 1841)

(Figure 1a)

Distribution

Examined material

One specimen in Boca Negra and six in La Bocana. LC average 9.53, 4.9-15.9 mm; AC average 8.97, 6.39-13.71 and HC average 7.54, 4.9-13.46 mm. Barnacles were caught on Melongena corona

Epizoic barnacles in Gulf of Mexico.

Receive: June 20th 2016 Accepted: July 8th 2016 Published: June 30th 2016
(Gmelin 1791) and *Brachidontes exustus* (Linnaeus 1758) shells between 20 and 22 psu.

Amphibalanus improvisus (Darwin 1854)
(Figure 1b)

Distribution

Examined material

LC average 7.05 mm, 1.93-11.95 mm; AC average 6.23 mm, 1.28-9.44 mm and HC average 3.51 mm, 0.59-4.85 mm. Four specimens in Boca Negra and 43 in La Bocana between 22 and 31 psu on Melongena melongena (Linnaeus 1758), *M. corona* and *B. exustus*.

Amphibalanus venustus (Darwin 1854)
(Figure 1c)

Distribution

Examined material

One organism in Boca Negra and 32 in La Bocana between 13 and 20 psu. LC average 5.97 mm, 2.44-13.88 mm; AC average 4.96 mm, 1.99-12.53 mm and HC average 2.74 mm, 1.2-9 mm. Epizoics on *M. corona*, *M. melongena*, *B. exustus* and *A. improvisus*.

DISCUSSION

Of the 10 species of barnacles registered for the Southern Gulf of Mexico (Celis 2009), *A. eburneus* and *A. improvisus* were included among the dominant crustaceans in the oyster banks of the Carmen-Machona and Mecoacán coastal lagoons (Tepetlan and Aldana-Aranda 2008). Moreover, the second species was abundant on coarse woody debris in the zone with tidal influence in Pantanos de Centla (Montalvo et al. 2010). *Megabalanus tintinnabulum* was reported in the Puerto de Sánchez Magallanes (Celis and Álvarez 2008), at the Santa Ana Inlet in the Laguna del Carmen. The *A. venustus* record is the first for an estuarine ecosystem in the southern Gulf of Mexico.

A. improvisus was dominant between 1 and 10 psu in the Chesapeake Bay (Lippson and Lippson 1984) and it was register in meso-polyhaline environments between 10.8 and 36.1 psu in the Paripe River, Brazil and Laguna Mecoacán (Farrapeira 2008, Tepetlan and Aldana-Aranda 2008). In addition, this barnacle was record between 0.69-2.76 psu in Pantanos de Centla (Montalvo et al. 2010). In this study, *A. improvisus* was capture between 22-31 psu in the two sites most influenced by tidal currents.

Alike, *A. eburneus* was capture in the above-cited two sites, between 20 and 22 psu. As *A. improvisus*, it was report in the Laguna Mecoacán between 23 and 32 psu (Tepetlan and Aldana-Aranda 2008). This barnacle was dominant in polyhaline...
Fig. 1: Epizoic barnacles recorded in Laguna Mecoacán: a) Amphibalanus eburneus, b) A. improvisus and c) A. venustus.

The distribution of epibionts barnacles’ has relation to salinity tolerance of their hosts (Farrapeira 2008). A. improvisus had registered on bryozoans, mollusks, other barnacles, and decapods (Giri and Wicksten 2002, Tepetlan and Aldana-Aranda 2008, Farrapeira et al. 2009, Farrapeira and Calado 2010), as well non-obligate commensals in turtles (ERC 2007). Meanwhile, A. eburneus is epizoic on mollusks (Celis and Álvarez 2008, Tepetlan and
Aldana-Aranda 2008). In addition, A. venustus and A. eburneus were non-obligate commensals and epibionts on shell turtles (ERC 2007, Barrios-Quiroz et al. 2013). In Laguna Mecoacán, the three species of barnacles were only epibionts of bivalves, gastropods, and barnacles, although there are high abundance and diversity of decapods in this lagoon (Domínguez et al. 2013).

CONCLUSIONS

In this century, the increase of barnacles’ records has been notorious in the Southern Gulf of Mexico. However, they are still limited in estuarine systems in the Grijalva-Usumacinta basin. With this review of epizoic barnacles, A. eburneus was add to the list and the presence of A. venustus and A. improvisus confirmed. The absence of epizoic barnacles in oligohaline environments close to the direct river drain, to open up the possibility of increasing the sampling effort to verify, if the lack is due to sampling effort or physiological limitations.

BIBLIOGRAPHY

Giri T and Wicksten MK. 2002. Fouling of the caridean shrimp, Lysmata wurdemanni (Gibbes, 1850) by the barnacle, Balanus improvisus Darwin, 1854 and other epibionts. Crustaceana 74: 1305–1314

Gittings SR, Dennis GD and Harry HW. 1986. Annotated guide to the barnacles of the northern Gulf of Mexico. Sea Grant College Program, Texas A&M University. 36 pp.

